Ateneo | Trasparenza | Eventi | Bandi e concorsi | Bacheca | Orientamento | Links utili | Search

        

 

 

METODI QUANTITATIVI PER LA FINANZA (E0389)
prof. Ernesto Salinelli – 8 cfu

(A.A. 2010/2011)

 

Settore Scientifico-Disciplinare:  SECS-S/06

Obiettivi formativi:
Il corso si propone di fornire una panoramica su alcuni metodi matematici utilizzati nella modellistica economico-finanziaria, focalizzando l’attenzione sia sulle tecniche sia sul loro utilizzo per la costruzione e l’analisi di tali modelli.

Contenuto:
Elementi di Algebra Lineare
Richiami su sistemi lineari e algebra delle matrici.
Determinanti, minori. Spazi euclidei, Prodotto interno, norma, disuguaglianza di Cauchy-Schwarz, vettori ortogonali. Indipendenza lineare. Spazi e sottospazi vettoriali, funzioni lineari. Autovalori ed autovettori, (cenni ai numeri complessi), molteplicità algebrica e geometrica, matrici diagonalizzabili. Applicazioni lineari. Forme quadratiche e loro segno. Esempi.
Funzioni di più variabili reali
Cenni su strutture metriche e topologiche. Calcolo differenziale: derivate parziali e direzionali, differenziale, formula del gradiente, teorema del differenziale totale, matrice Jacobiana. Derivazione delle funzioni composte, formula di Taylor. Funzioni implicite. Funzioni convesse.
Ottimizzazione statica
Ottimizzazione libera: teorema di Fermat, condizioni necessarie e sufficienti del secondo ordine.
Ottimizzazione vincolata: metodo di sostituzione, metodo dei moltiplicatori di Lagrange, condizioni sufficienti del secondo ordine per un massimo o minimo vincolato, matrice Hessiana orlata. Significato dei moltiplicatori di Lagrange. Cenni di programmazione matematica. Esempi.
Calcolo integrale
Primitive, integrale indefinito. Calcolo di primitive: metodo di integrazione per parti, metodo di sostituzione.
Integrale definito e sue proprietà. Teorema del valor medio. Funzione integrale: definizione e sue proprietà. Teorema fondamentale del calcolo integrale e di Torricelli-Barrow. Integrali generalizzati ed applicazioni. Introduzione alle equazioni differenziali ordinarie.

Materiale didattico:
Simon C.P. – Blume L.E., Matematica Generale, EGEA, 2009
Simon C.P. – Blume L.E., Matematica 2, EGEA, 2002 (capitoli: 1, 3, 4, 5, 6, 7, 8, 9, 11,13, A1)
Margarita S. - Salinelli E., Metodi matematici per l'analisi economica, Etas, 1997 (eserciziario)
Ulteriori letture saranno indicate dal Docente in aula.

Modalità didattiche:

Lezioni ed esercitazioni.

Modalità d’esame:
L’esame consta di una prova scritta e di una prova orale, entrambe obbligatorie.

 

Il materiale didattico ed ulteriori informazioni relative al corso sono scaricabili alla pagina http://moodle.eco.unipmn.it 

 

 


Università degli Studi del Piemonte Orientale
-credits-